CC 28th April 2008 Classpad Examples

Classpad Examples

1. [3AMAT/S]

Determine exact solutions for the following equations.

(a)
$$5^{x+1} = \frac{1}{25}$$

(a)
$$5^{x+1} = \frac{1}{25}$$
 (b) $\log_5 \frac{1}{x+1} = -2$

2. [3BMAS]

Write an equation for the tangent to the curve $y = 3\ln(x+2)$ at the point where x = 4.

3. [2D/3AMAT]

A recursive sequence is defined as

$$T_{n+3} = T_{n+2} - T_{n+1} + T_n + 5$$
 with $T_1 = 1$, $T_2 = 3$, $T_3 = 7$

Find the next three terms of the sequence and T_{22} .

❤ File Edit Graph Action 🗵			
(: \$ "	АВС	DEFG	ΗI►
	А	В	C _
1	1		
2	3		
2 3 4	7		
<u>5</u>			
6			
7			
8			
9			
10			Ш
11			Ш
12			Ш
13			<u> </u>
14			
15			- I
=A3-A2	+A1+5		- VX
A4			(III

Classpad Examples CC 28th April 2008

4. [3AMAT]

Solve the simultaneous equations y-x=2 and $y=x^2-6x+8$.

5. [3B/3CMAT]

Differentiate each of the following with respect to *x*.

(a)
$$y = 4x^2 + 3\sqrt{x} - 4 + \frac{1}{x}$$

(b)
$$y = \frac{2x^3 - 1}{2 - x^2}$$

6. [2D/3AMAT]

A sketch of a lot from a surveyor's notebook is shown. All the lengths are in metres. Find the area of the land.

CC 28th April 2008 Classpad Examples

7. [3BMAT]

A cylindrical canister of radius r that is open at one end has a volume of 480cm³. Find the minimum possible surface area of the cylindrical canister.

8. [3CMAT/S]

Find the following indefinite integrals.

(a)
$$\int \left(3x^2 + \frac{5}{e^{2x}}\right) dx$$
 (b) $\int \frac{(x+2)^2}{x} dx$

(b)
$$\int \frac{(x+2)^2}{x} dx$$

9. [3CMAT]

Find the area trapped between the curves

$$f(x) = 1 + x$$
 and $g(x) = x^2 - 5$.

Classpad Examples CC 28th April 2008

10. [3BMAS] A body A leaves the origin and travels with velocity $8\mathbf{i} + 6\mathbf{j}$. How close does it come to point B which is stationary with position vector $20\mathbf{i} + 6\mathbf{j}$?

11. [3DMAS]

The population of a town 5 years ago was 7600 and has been increasing such that

$$\frac{dP}{dt} = 0.015P.$$

Find the likely population of the town in 10 years time.

12. [3CMAS] Find the equation of the curve with gradient function $\frac{dy}{dx} = \frac{x}{1+x^2}$ given that the curve passes through the point $(1, \ln(2))$.

Classpad Examples CC 28th April 2008

13. [2D/3AMAT]

Calculate the size of angle θ .

14. [3CMAS]

Find the maximum area of the rectangle with diagonal OA where O is the origin and A is a point on the curve $y = \sqrt{12 - x^2}$ in the first quadrant.

